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Almract--A physical model was developed to study heat transfer in turbulent dispersed flow at very high 
vapor quality in a vertical pipe by numerically solving the coupling governing differential equations for 
both phases. Major heat transfer mechanisms included in the model were the thermal nonequilibrium 
effects, droplet vaporization, droplet deposition on the duct wall and thermal radiative transfer. The 
predicted results indicated that vapor superheating is dominant for the cases with high wall superheat, 
otherwise droplet vaporization dominates the energy transport processes. Heat transfer during the 
droplet-wall interaction only exists at low wall superheat but in small amounts. 
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I N T R O D U C T I O N  

Dispersed flow is characterized by the presence of  a large quantity of fine liquid droplets in a 
continuous vapor flow. Momentum and heat transfer in this particular type of flow is largely 
affected by the droplet deposition on the duct wall, the vaporization of the droplets and the latent 
heat transport associated with it. The study of  heat transfer in dispersed droplet flows is motivated 
by its importance in various applications, ranging from the operations of steam generators and 
cryogenic machinery, and the safety of  nuclear reactors during the loss-of-flow accidents, to the 
spray combustion processes. Due to the complexities of  the transport processes occurring in the 
flows, experimental approaches have failed to measure the detailed characteristics of  the flows, and 
a rigorous computational physical model including all the major transport mechanisms has not yet 
been presented. 

Models used to treat dispersed flow can be classified as empirical or phenomenological. Empirical 
models fit the experimental data to a proposed relationship, while phenomenological models take 
into account the physical processes involved. Phenomenological models can be further subdivided 
into models which utilize the existing heat transfer correlations and those that solve the 
conservation equations. 

Correlations are normally developed using data from a limited number of  sources and, as such, 
are typically limited to a range of  flow conditions and one fluid. Many correlations begin with an 
accepted equation for single-phase heat transfer, such as the McAdams or Dittus-Boelter 
correlation, which is then modified to account for such effects as thermal nonequilibrium, droplet 
size, ratio of  vapor to liquid velocities, void fraction etc. 

Most phenomenological approaches start with an assumed heat transfer model which encom- 
passes the major transfer processes occurring in the flow. Using correlations to characterize 
individual mechanisms, the model predicts the flow as it moves along the pipe. This requires a 
step-by-step solution scheme and must be implemented on a computer. The advantage in this 
approach is that it accounts for specific heat transfer mechanisms within the flow. 

Various workers over the past two decades have attempted to explain the dispersed flow heat 
transfer through the identification of individual mechanisms. Thermodynamic nonequilibrium in 
dispersed two-phase flow was first suggested by Parker & Grosh (1961). Laverty & Rohsenow 
(1967), attempting to analyze the nonequilibrium effect in dispersed flow, proposed a model 
whereby heat transfer in the flow was considered to be a two-step process in which all the heat 
input from the wall is transferred to the vapor and then from the vapor to the liquid droplets. 
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Forslund & Rohsenow (1968) improved this model by accounting for droplet breakup and by 
modifying the drag coefficient of the accelerating drops. In addition, a "Leidenfrost" heat transfer 
from the wall to the droplets at low vapor qualities was included. Ganic & Rohsenow (1977) studied 
the structure of fully-developed dispersed flow, paying special attention to droplet deposition on 
the duct wall, the possible successive states of drop-wall interactions and the heat transfer to a 
single drop deposited on the heated wall. Bhatti (1977) assumed that the axial motion of droplets 
is with the local gas velocity without slip and investigated the transverse motion of droplets under 
the influence of Stokes' drag, buoyancy, gravity and inertia forces. Later, Ganic & Rohsenow 
(1979) examined the deposition of liquid drops in dispersed flow in greater detail. Chen et al. (1979) 
developed a phenomenoiogical model and proposed a correlation of the convective vapor heat 
transfer in the post-CHF region by using a momentum-transfer analogy, allowing for thermody- 
namic nonequilibrium. Yao (1979) proposed a model to calculate the forced convection heat 
transfer in laminar droplet flow in the thermal entrance region of circular tubes with constant wall 
temperature, without considering the slip between the phases. The saturated droplets moving in 
the superheated vapor stream were treated as distributed heat sinks. The variations in the droplet 
size and population density of the droplets were not considered. Later, the reductions in droplet 
size, the increase in the vapor velocity and the dilution of the droplet density along the tube were 
all included by Rane & Yao (1980) and Yao & Rane (1980). Calculations were performed from 
the inlet of the thermal entrance region to the final fully-developed single-phase flow of vapor far 
downstream. Renksizbulut & Yuen (1983a, b) conducted experimental and numerical studies of 
droplet evaporation in a high-temperature gas flow past an evaporating liquid droplet and 
suggested correlations for drag and heat transfer coefficients. Rane & Yao (1981), Yao & Rane 
(1981) and Webb &Chen (1982) further considered the flow pattern as turbulent to determine the 
characteristics of dispersed flow. A much simpler prediction method was developed by Yoder & 
Rohsenow (1983) in predicting the steady-state dispersed flow heat transfer under constant heat 
flux conditions. Differential transport equations and accepted heat transfer correlations were 
employed to form a solution dependent only upon knowledge of the conditions at the dryout point. 
Thermal nonequilibrium is included in the analysis and the actual flow quality is determined from 
the local equilibrium conditions. Thermal radiation between the wall, vapor and droplets was 
demonstrated to be rather significant by Chung & Olafsson (1984) when the system is at high 
temperature. Despite these attempts to model heat transfer in dispersed flow, the detailed 
characteristics of momentum and heat transfer in dispersed flow are not well-understood. It was 
recently indicated by Varone & Rohsenow (1986), Koai et al. (1986) and Rohsenow (1988) that 
turbulence in the vapor is significantly modified by the presence of droplets and thus exhibits 
profound influences on the radial momentum and heat transfer in the dispersed flow, especially 
for low quality post-dryout heat transfer. To explain this turbulence modification by the droplets, 
a Nusseit number ratios RNu was proposed. 

To elucidate the details of momentum and heat transfer, the dispersed flow model should be 
improved. In an attempt to investigtate the detailed heat transfer processes in dispersed flows, an 
improved physical model is developed for turbulent dispersed flow heat transfer in a vertical pipe. 
The governing partial differential equations, based on the continuum assumptions for both phases, 
representing the conservation of mass, momentum and energy for the vapor and droplet phases 
are solved numerically. To embody the couplings between the phases, the interfacial drag and 
convective heat transfer, the body force for each phase, the droplet evaporation and its effects on 
momentum and heat transfer in the flow are all taken into account. Numerical finite-difference 
procedures are employed to solve the governing equations with considerable attention being paid 
to the handling of the intimate couplings between the vapor and droplet phases. Computations are 
specifically performed for the mixture of fine liquid water droplets moving in their own vapor at 
high pressures normally encountered in the safety studies of nuclear reactors. 

PHYSICAL AND MATHEMATICAL MODELS 

Dispersed flow heat transfer consists of several individual heat transfer mechanisms as suggested 
in the literature review above. An accurate analysis of dispersed flow must include at least the major 
mechanisms. Thus, how the interactions among the drops, the vapor and the heated wall may affect 
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the wall heat transfer and the degree of thermodynamic nonequilibrium in the flow must be 
carefully modeled. 

Despite the numerous attempts to model dispersed flow heat transfer, the predicted wall and 
vapor temperature variations are not in reasonable agreement with the experimental data, as 
reviewed by Varone & Rohsenow (1986). This indicates that our understanding of the heat transfer 
mechanisms occurring in the flow is still far from satisfactory. A better model which embodies more 
accurate physical mechanisms in the flow must be developed. As a preliminary attempt, the present 
study aims to develop a physical model which can improve our understanding of the flow and 
thermal characteristics in turbulent two-phase evaporating droplet flows. 

Crowe (1978, 1979) presented a straightforward derivation based on conservation principles for 
both phases treated as continuums to yield a reliable set of continuity, momentum and energy 
equations for general, three-dimensional dispersed flows. Fundamental to the derivation of the 
two-fluid model for the dispersed flow presented in these papers is the transport theorem relating 
to the Lagrangian and Eulerian description of fluid motion with proper treatment of boundary 
effects at the phase interfaces. According to these conservation equations, terms considered to be 
important for the present problem are retained. In this fashion the governing equations for 
turbulent dispersed flows are obtained. 

Before presenting the model equations, the physical situation under consideration is first 
described. A turbulent dispersed flow at the saturated temperature T~ enters the bottom end of a 
vertical pipe with a fully-developed velocity profile for both vapor and droplets. When the flow 
moves upwards in the pipe, the vapor gets superheated by receiving energy from the wall which 
is imposed by a constant heat flux q~ in spite of losing some energy to evaporate the liquid droplets. 
The droplets are in fact at the saturated state. Since the vapor is at the thermal nonequilibrium 
state, the droplets evaporate with saturated vapor generated over their surfaces and the generated 
vapor gets heated as it moves into the vapor stream. For a water/steam system, the wall superheat 
can be relatively high and hence the thermal radiation heat transfer could be significant. 
Additionally, energy transfer resulting from droplet deposition on the pipe wall is significant at low 
wall superheat, as noted by Ganic & Rohsenow 0977, 1979) and Varone & Rohsenow (1986). 
These two processes are also included in the model. 

For simplicity, at the tube inlet all the droplets are assumed to be the same size. In the flow 
droplets may move radially due to the presence of radial temperature and/or velocity gradients. 
A droplet will be pushed away from the wall due to its nonuniform evaporation near the wall. In 
reality, the droplet sizes are nonuniform both radially and axially. To simplify the analysis, in this 
study droplets are considered to be uniform in the radial direction r. Only axial variation in droplet 
size is accounted for. 

In light of facilitating the analysis the following major simplifying assumptions are made: 

(l) Steady axisymmetric flow and heat transfer is considered. 
(2) Droplets are spherical and no droplet breakup occurs. 
(3) The liquid is at the saturation state at the inlet point (dryout point) and remains 

so in the flow. 
(4) The droplet size distribution can be characterized by an average drop size d and 

can only vary in the axial direction z. 
(5) The vapor at the dryout point is at the saturated state. 
(6) The axial heat conduction in the fluid is not included because low Prclet number 

flows are not considered. 
(7) The effect of pipe wall heat conduction can be neglected. 
(8) The vapor and droplet phases are treated as continuums in writing the transport 

equations. 

With the above assumptions and boundary layer approximations, the governing equations for 
heat transfer in the flow can be described as follows: 

(,4) gas phase (continuous phase) 
-----continuity equation 

lc~ 
~: (epeu¢) + ~ (epcrt, c) = m~, [la] 

r o r  
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--axial momentum equation 

~uc ~uc']= d p +  10 er( ,c+, t )_~r j_ fd_(U_Ud)rh_ep~g [lb] e.p~ U~ ~z + VC ~r ] -e-~z r ~r 

and 

---energy equation 

ep~c~ uc--~-z +r ~ Or] ~ er(k~+k,+k,) Or j-mc(i~-is);  [Ic] 

and 

(B) droplet phase (dispersed phase) 
----continuity equation 

O~ [(1 - ~)OdUdl + ~ r  [(I -- ~)pdrVdl = --rnc, [ldl 

--axial momentum equation 

( dud 0"d  
p d ( l - e )  Ud-~- z +Vd d r J = A : - - ( l - - e ) P d g  [ie] 

and 

----energy equation 

Td = L =f(P) .  [If] 

In the above equations u, v, T, i, p, p, # and k, respectively, stand for the axial velocity, radial 
velocity, temperature, enthalpy, pressure, density, dynamic viscosity and thermal conductivity; g 
is the gravitational acceleration and e is the vapor void fraction. The subscripts c and d denote 
the continuous (vapor) and dispersed (droplet) phases, respectively. 

The first term on the r.h.s, of [la] and [Id], rn c, represents the volumetric vapor generation rate. 
If the chemical composition of the vapor and droplet are identical, mass transfer due to a 
concentration difference will not occur. Heat is transferred from the superheated vapor to the 
saturated droplets, and the subsequently generated vapor will be heated up to the local 
vapor stream temperature. As a result, the equivalent heat sink per unit volume is 
mtd2hcd.(Tc- Ts)(l + B) and the associated volumetric vapor generation rate is 
nnd"h~d.(T ~- Ts)/hLG. Here hod is the convection heat transfer coefficient from the superheated 
vapor to a saturated droplet, and n, d and hLG are the droplet number density, average droplet 
diameter and latent heat of vaporization, respectively. The parameter B is the mass transfer 
number, a superheat parameter defined as c~. (T,, - T~)/hLG. Here cr~ is the specific heat of the 
vapor. The heat transfer coefficient for the evaporation of water droplets in a superheated steam, 
as shown by Renksizbulut & Yuen (1983b), is 

h~ d k~ = • P,c j, [2] (2.0 + 7.4 Re~i 5 _033,. 

where ReM is the droplet Reynolds number based on the droplet size and its relative velocity to 
vapor, 

ReM = pclu~ - Udld [31 

and Pr~ is the Prandtl number for the continuous phase. 
The third term on the r.h.s, of lib], also the first term on the r.h.s, of [le], fd:, stands for the 

aerodynamic force due to the velocity difference between the vapor and the droplets in the axial 
direction, and is defined as 

ArCd:pcu~I [4] 
A : =  2 ' 
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where Ar is the toal frontal area of the dropltes. If droplets are treated as spheres, the frontal area 
of the droplets is nnd2/4. In [4] u,,~ is the relative axial velocity between the droplet and the vapor. 
With these relations substituted, [4] can be written as 

nd 2 
sign(uc - Ud)n 7 C~u Pc (uc - Ud )2 

A: = 2 ' [51 

where sign(uc- Ud) has the following meaning: 

{1, i fuc> u d 
sign(uc -- Ud) = 1, if Uc < Ud" [6] 

Taking the evaporation on the droplet surfaces into account, the drag coefficient C~, in the droplet 
Reynolds number ranging from 10 to 260, was correlated by Renksizbulut & Yuen (1983b) as 

24 (1 + 0.2 Re~i 63) 
C,~ = Re---M (I + B) °2 [7] ' 

For ReM < 10, the following correlation proposed by White (1974) is used: 

24 6 
Cd: = ~ + ! + Re-------~M/2 t- 0.4. [8] 

The fifth term on the r.h.s, of [lb] and the second term on the r.h.s, of [le] represent the body 
forces. The fourth term on the r.h.s, of [lb], (u~ - Ud)n~, stands for the force due to evaporation 
of droplets, which is proportional to the velocity difference between the vapor and the droplets. 

Turbulence in two-phase evaporating droplet flow is poorly understood. In vapor-droplet flow 
the turbulence is affected by complex interactions between the droplets and vapor, droplets and 
droplets, droplets and wall etc. Decent information on these interactions is currently unavailable, 
as indicated by Varone & Rohsenow (1986) and Zisselmar & Molerus (1979). In the present study 
the flow considered is at a high vapor void fraction and the two-phase effects on the turbulence 
are ignored. Therefore the results obtained in this study are not expected to be accurate for 
low-quality flow. Consequently, the single-phase correlation given by Cebeci & Bradshaw (1984) 
for eddy viscosity/a t is used: 

ox,( y)lt2 ta, " O r '  [91 

here 

A = 26(/~c']('*'] ''2 [10] 
\PJkP, . /  

and 

, = R  . [ 0 . 1 4 - 0 . 0 8 ( 1 -  Y ) Z -  0 .06(1-  R ) ' ] '  [l,] 

where 1 is the mixing length, y is the distance from the pipe wall, r ,  is the wall shear stress and 
R is the pipe radius. The turbulent thermal conductivity kt is evaluated through the concept of the 
turbulent Prandtl number Pr,. The appropriate correlation for flow in a circular pipe is due to 
Malhotra & Kang (1984), 

I 
Prt = (0.91 + 0.13 _0~5, [12] Pie ) 

and 

k, = c~' ~ .  [I 3] 

Thermal radiation heat transfer in droplet flow is now described. At the high system pressure 
considered here vapor can be treated as an optically thick medium and a diffusion approximation 
is appropriate, as pointed out by Chung & Olafsson (1984) and Siegel & Howell (1981). Hence the 



1002 r ,  F. LINet  al. 

equivalent thermal conductivity due to thermal radiation kr can be evaluated: 

16a s 3 
kr = ~ T~, [14] 

here aR is the Rosseland absorption coefficient for vapor and is evaluated by the method developed 
by Abu-Romia & Tien (1967) and tr s is the Stefan-Boltzmann constant. For the problem under 
consideration, radiative-transfer from the wall to the droplets and from the vapor to the droplets 
was found to be relatively small compared to the corresponding convective mode. 

Equations [la-f] are subjected to the following boundary conditions: 

at z = 0 ,  U¢=Ud=U,, T~= Td= Ts; 

Ou~ dud OT~ 
at r = 0, Or Or Or = 0; [15] 

at r = R,  uc = Ud = 0 ,  (kc + kr + q~d q~.. 

Here u~ is the fully-developed turbulent velocity profile for single-phase flow at the entrance, which 
can be calculated by the procedures given by Kays & Crawford (1980). 

Heat transfer resulting from droplet deposition on the pipe wall, q"d, is included in the model 
through the thermal boundary condition given in [15]. Empirically, from the studies of Ganic & 
Rohsenow (1977) and Varone & Rohsenow (1986), q~,d can be expressed as 

qwd . . . .  -- ~ V0(I -- e) "Pd' hLG, [16] 

here 

v0 = 0.17u* [17] 

and u* is the friction velocity. An empirical correlation for calculating the heat transfer effectiveness 
e during the droplet deposition process was proposed by Kendall & Rohsenow (1978). 

It is noted in [15] that at the pipe wall the no-slip condition is applied to the droplet flow, i.e. 
Ud = 0. This is appropriate since the droplets are considered to be a continuum in the model. 

The void fraction is defined as the ratio of the volume occupied by the vapor phase to the total 
volume at any cross section of the pipe. It is evaluated by the equation 

n d~. [18] e = l - n ~  

The droplet size is assumed to be radially uniform, as just mentioned, but can vary along the 
axial direction. By integrating the continuity equation for the droplet phase, [Id], over the pipe 
cross section and making use of [18], we obtain an equation for determining the axial variation 
of the droplet diameter: 

dz pdUdn d3 " nR2 = - m~2nr dr, [19] 
do 

here ~d is the average droplet velocity over the cross section considered. The average droplet 
diameter at the dryout point (z = 0) is estimated from the correlation proposed by Saha (1980): 

1} de 2.94 Pc) [20] 
R 

here G is the mixture mass flux, x, is the actual vapor quality at the entrance and tr is the surface 
tension. 

Because it is assumed that no droplet breakup occurs, the total number of droplets passing 
through any pipe cross section per unit time is equal to the value at the tube inlet nd2,, 

n,~,=n~d. [21] 
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Equations [la-f], [18], [19] and [21] contain nine unknowns (u¢, ud, re, re, Tc,p, ¢, n and d), but 
we have only eight equations. Another equation must be sought. In analogy to single-phase pipe 
flows, the constraint to be satisfied in the analysis of a steady pipe flow is the overall mass balance 
for the vapor phase, which can be obtained by integrating [la] with respect to r from 0 to R. In 
a dimensional form it is expressed as 

o;; f; ~z cpcru¢ dr = rrh¢ dr. [22] 

This equation is used in the solution process to check whether the pressure gradient, which is the 
first term on the r.h.s, of [lb], in the flow is correctly determined. 

It is worth mentioning that the variations in the thermophysical properties of the steam with 
temperature and pressure are calculated from steam table data. 

Some quantities of importance in illustrating heat transfer in dispersed flow are introduced here. 
The fraction of energy absorbed during the process of droplet evaporation (FRDE), the fraction 
of energy absorbed during droplet deposition on the wall (FRDD) and the fraction of energy causing 
the vapor to become superheated (FRvs) due to convective and radiative heating are physically 
important in understanding the mechanisms of energy transport in the flow. By considering a 
differential control volume in the flow with differential pipe length dz, these fractions can be 
evaluated by the relations 

FRDE = l~qwR ['jo R rh¢(i¢ - is)r dr, [23] 

q"d 
FRDD - -  [24] q~ 

and 

FRvs = 1 - FRDE -- FRDD. 

The local two-phase Nusselt number along the duct is defined as 

h:(2R) 
Nu - - - - -  

kc ' 

where the total local heat transfer coefficient is evaluated by 

q" 
h. 

(T,~ - Tb);- 

[251 

[26] 

[27] 

here Tw and Tb are, respectively, the wall temperature and the bulk temperature of the vapor. 

SOLUTION METHODOLOGY 

The finite-difference approximations to the partial derivatives are used to discretize the governing 
differential equations [la--e]. The centered difference is used for the radial diffusion terms, while 
in the axial direction we use the upwind difference because the flow is convection-dominant. 
Nonuniform step sizes are employed in both the radial and axial directions. 121 grid points are 
placed in the radial direction from the centerline to the pipe wall. The step sizes in the axial direction 
range from 0.1 to 2R with the gridlines more concentrated in the inlet region. 

Since equations [la-e] are nonlinear, iinearization is necessary. This was implemented by 
iteratively solving the finite-difference equations which were put in the form of tridiagonal matrix 
equations and solved by the Thomas algorithm, described by Anderson et al. (1984). 

The solution procedures are briefly outlined as follows: 

(1) For any axial location, guess a dp/dz and solve the finite-difference form of 
equation [lb] for the distribution of uc. 

(2) Integrate the vapor continuity equation [la] numerically to find the vapor radial 
velocity v,. 

(3) Solve the finite difference form of [Ic] to find the temperature profile To. 

M F  15'~-J 
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(4) Solve the finite difference form of [le] to find the distribution of droplet axial 
velocity ua. 

(5) Integrate [ld] to get the profile of droplet radial velocity yd. 
(6) Substitute the droplet axial velocity ud into [19] and [21] to find the droplet 

number density n and droplet size d. Use the results for n and d to get the void 
fraction e from [18]. 

(7) Check the satisfaction of the overall conservation of mass, [22] and the 
convergence of the velocity and temperature fields in each iteration. If yes, repeat 
the above procedures for the next axial location. If no, guess a new dp/dz and 
repeat procedures (1)-(6) for the current axial location. The tolerance for the 
satisfaction of the overall mass conservation equation and the convergence 
criterion of the velocity and temperature fields are set to be l0 -5 and l0 -3, 
respectively. 

Since the dispersed flow treated here is at high vapor void fraction, the heat transfer mechanism 
in it is close to that in the single-phase flow of vapor. The solution technique used here to solve 
the conservation equations is a natural extension of that employed for single-phase heat transfer 
problems by adding the continuity and momentum equations for the droplet flow to the 
computation. For the purpose of verifying our numerical scheme, the predicted wall superheats are 
compared with the data of Bennett et al. (1967) in figure l for dispersed flow in a vertical pipe 
of diameter D = 0.012 m. Good agreement is noted in figure I. Additionally, the predicted wall 
superheats for the cases shown in figure l, predicted using a finer grid system of doubling the 
number of nodes in both the axial and radial directions, differ from that predicted by the original 
grid by <3%. Through these program tests, the proposed numerical scheme is considered to be 
suitable for solving the problem investigated. 

RESULTS AND DISCUSSION 

Over the past two decades a number of experimental studies have been performed to investigate 
dispersed flow heat transfer. In these studies, data are mainly provided for the distributions of wall 
superheat, (Tw- T,). Information on the detailed thermal and hydrodynamic characteristics is not 
currently available. To validate the proposed physical model, the predicted axial distributions 
of wall superheat are compared with the data of Bennett et al. (1967) and Era et al. (1966) in 
figures 1 and 2 for three cases representing the results for high, medium and low wall superheats. 
For the high wall superheat case excellent agreement is noted. The agreements gradually become 
worse for the lower wall superheat cases. In particular, for the low wall superheat case (figure 2) 
the agreement is not good. This disagreement with the data of Era et al. is due to the low-quality 
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Figure I, Comparison of  the predicted wall superheat with Figure 2. Comparison of  the predicted wall superheat with 
the data of  Bennett et al. (1967). the data of  the Era et al. (1966). 
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Figure 3. The vapor temperature profiles at various axial 
locations for the high wall superheat case. 
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Figure 4. The vapor temperature profiles at various axial 
locations for the medium wall superheat case. 

dryout (Xdo = 0.45) in this case. A very large amount of droplets in the flow greatly changes the 
turbulence in the vapor, as noted by Varone & Rohsenow (1986) and Koai et al. (1986). The 
single-phase eddy viscosity employed here is simply inappropriate in this case. Therefore, the model 
is considered to be suitable for providing qualitative results for understanding the heat transfer 
characteristics in the dispersed flow at low liquid content. In what follows we present these 
characteristics. 

Presented in figures 3 and 4 are the radial distributions of the vapor superheat, (To - T,), at 
various axial locations for the high and medium wall superheat cases. Significant vapor superheat- 
ing is observed in figure 3 for the high AT, (=  T, - 7",) case, indicating that a substantial amount 
of heat input to the flow through the pipe wall goes to the vapor through convective and radiative 
transfer processes. The vapor is thus in a highly nonequilibrium state. This is simply because the 
liquid content in the flow is small for the dryout vapor quality at 0.76. For the medium AT, case 
(Xdo = 0.33) the vapor superheating shown in figure 4 is only very slight. The result is a direct 
consequence of the dominant heat transfer in the flow by the droplet evaporation when the liquid 
content is high. These trends in the vapor superheat can be distinctly seen by examining the bulk 
vapor temperature variations given in figure 5. It is of interest to note that at low vapor quality 
(Xdo = 0.33) the vapor superheat quickly levels off after the flow leaves the dryout point and stays 
at this level as the flow moves downstream. 
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Figure 5. The distributions of the bulk vapor temperature. Figure 6. The distribution of the heat sink due to droplet 
vaporization for the high wall superheat case. 
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Figure 8. The predicted fractions of energy for various heat 
transfer processes for the high wall superheat case. 

Energy absorption by droplet evaporation has been considered to be important in dispersed flow 
heat transfer in many studies (Yao & Rane 1980; Webb & Chen 1982). Figures 6 and 7 show this 
energy absorption predicted for the present study for the high and medium AT,~ cases. At high Xdo 
(figure 6) the heat sink due to droplet evaporation is not large because only a small amount of 
droplets is present in the flow. When the droplets present in the flow are in large quantities at low 
Xdo, the energy absorbed by droplet evaporation is rather significant (figure 7). In addition, the heat 
sink for the low Xdo case is found to be more pronounced in the near-wall regions, especially in 
the entry portion of the pipe. 

To unravel the detailed heat transfer characteristics, a close examination of the various heat 
transfer mechanisms in the flow is required. In the physical model presented in this study three 
heat transfer mechanisms are taken into consideration. They are: (1) heat transfer from the wall 
to the single-phase vapor by convective and radiative transfer processes; (2) heat transfer from the 
superheated vapor to the liquid droplets causing droplet vaporization; and (3) heat transfer from 
the wall to the droplets during the droplet-wall interactions. According to these three mechanisms, 
the energy transferred to the dispersed flow from the uniform heating imposed on the pipe wall 
can be conveniently divided into three portions: the fraction FRvs, defined in [25], contributes to 
heating up the vapor from the saturated condition to the superheated state; the fraction FRDE, 
defined in [23], causes droplet evaporation and brings the saturated vapor generated on the droplet 
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Figure 9. The predicted fractions of energy for various heat transfer processes for the medium wall 
superheat case. 
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surfaces to the local superheated vapor temperature; and the third fraction FRDD, defined in [24], 
accounts for the energy absorbed during the droplet deposition on the wall. 

The distributions of FRvs, FRDE and FRoo for the three different wall superheat cases are 
illustrated in figures 8-10. At high wall superheat (figure 8), the wall temperature is above the 
Leidenfrost temperature and no droplet deposition on the wall occurs. Accordingly, FRDD = 0. The 
result in figure 8 clearly indicates that in the entry portion of the pipe the heat input to the flow 
mostly goes to the vapor and thus causes it to become superheated. As the vapor becomes 
superheated, it transfers energy to the droplets by the convective process, resulting in droplet 
evaporation. More and more energy goes to the vaporizing droplets when the degree of vapor 
superheating increases. Consequently, FRvs decreases but FRDE increases as the flow moves 
downstream. In the downstream region (z > 3 m), although the vapor superheat increases, the 
energy absorption by droplet evaporation gradually reduces--a result of the dilution of the droplets 
by the flow acceleration, [21], and the reduction in droplet size through the vaporization of droplets. 
It is worth noting that in this region FRvs > FRoE. 

For the medium wall superheat case the result in figure 9 also indicates that FRDD = 0, since T, 
still exceeds the Leidenfrost point. In the presence of a large quantity of liquid droplets in the flow 
(Xdo = 0.33) FRvs decreases and FRDE increases drastically in the flow direction, and droplet 
vaporization absorbs about 80% of the heat input to the flow except in the region near the dryout 
location. When the wall superheat is low, the droplet deposition on the wall accounts for about 
4% of the energy transport in the flow, as seen in figure 10. The variations of FRvs and FRDE in 
this case are similar to those for the medium wall superheat case. 

Finally, we present the local two-phase Nu in the flow. At high wall superheat the Nu shown 
in figure 11 decreases monotonically in the flow direction, as does that encountered in forced 
convection single-phase flows through pipes. This is due to the low liquid content in the flow 
(Xdo = 0.76) and the heat transfer characteristics in it being close to those in single-phase flows. For 
the case with a high liquid content (Xdo = 0.33) Nu drops quickly in the entry portion of the pipe 
but after a certain location it rises steadily. This result implies that the presence of a large quantity 
of droplets exhibits pronounced effects on the heat transfer in the flow, and Nu is much larger--a 
similar result to those found by Chung & Olafsson (1984). 

CONCLUDING REMARKS 

A physical model embodying the thermal nonequilibrium effects, droplet deposition on the duct 
wall, droplet evaporation and thermal radiative transfer has been developed for heat transfer in 
turbulent dispersed flow. The model is expected to yield accurate results at very high vapor quality. 
The predicted results for the cases considered indicate that vapor superheating is important for high 
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vapor quality dispersed flow and that the vaporization of droplets becomes dominant when the 
liquid content is high. Heat transfer during the droplet-wall interaction process only exists for the 
low wall superheat case but in a small amount. 

In developing the model several important processes were ignored, namely, the droplet--droplet 
interaction, droplet breakup, turbulence modification by the presence of droplets etc. These 
processes are particularly important in low vapor quality flows, as measured by Era et al. (1966). 
Therefore appropriate models for these processes are required. 
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